\qquad
\qquad

8-6 Word Problem Practice

Solving $x^{2}+b x+c=0$

1. COMPACT DISCS A compact disc jewel case has a width 2 centimeters greater than its length. The area for the front cover is 168 square centimeters. The first two steps to finding the value of x are shown below. Solve the equation and find the length of the case.

$$
\begin{gathered}
\text { Length } \times \text { width }=\text { area } \\
x(x+2)=168 \\
x^{2}+2 x-168=0
\end{gathered}
$$

-14 or 12; 12 cm
2. MATH GAMES Fiona and Greg play a number guessing game. Greg gives Fiona this hint about his two secret numbers, "The product of the two consecutive positive integers that I am thinking of is 11 more than their sum." What are Greg's numbers? 4 and 5
3. BRIDGE ENGINEERING A car driving over a suspension bridge is supported by a cable hanging between the ends of the bridge. Since its shape is parabolic, it can be modeled by a quadratic equation. The height above the road bed of a bridge's cable h in inches measured at distance d in yards from the first tower is given by $h=d^{2}-36 d+324$.

If the driver of a car looks out at a height of 49 inches above the roadbed, at what distance(s) from the tower will the driver's eyes be at the same height as the cable? at 11 and 25 yds from the first tower
4. PHYSICAL SCIENCE The boiling point of water depends on altitude. The following equation approximates the number of degrees D below $212^{\circ} \mathrm{F}$ at which water will boil at altitude h.

$$
D^{2}+520 D=h
$$

In Denver, Colorado, the altitude is approximately 5300 feet above sea level. At approximately what temperature does water boil in Denver?
$D=10^{\circ}$ drop
The boiling point is about $202^{\circ} \mathrm{F}$.
5. MONUMENTS Susan is designing a pyramidal stone monument for a local park. The design specifications tell her that the height needs to be 9 feet, the width of the base must be 5 feet less than the length, and the volume should be 150 cubic feet. Recall that the volume of a pyramid is given by $V=\frac{1}{3} B h$, where B is the area of the base and h is the height.
a. Write and solve an equation to find the width of the base of the monument.
$150=\frac{1}{3} w(w+5) \cdot 9$ or
$3 w^{2}+15 w-150=0 ; w=$ $\{5,-10\}$
b. Interpret each answer in terms of the situation. $w=5$: the width of the pyramid is 5 feet; $w=-10$: negative length doesn't make sense in the situation.

